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PREFACE

This is the first report in a series of studies conducted to produce a
realistic operations research theory of attrition and reliability of land
supply carriers. This research is a part of the Generalized Transpor-
tation Analogue (GTA) effort., The purpose of the "Truck-Transport
Model" study is to test conclusively the viability of (and, if viable, to
exploit) the hypothesis that general terrain properties, enemy action,
personnel behavior, aad limited command decision determine the most
probable performance of a land supply system and that this performance
can be adequately described with transfer theory.

Chapter 1 states the basic concepts of transfer theory, develops the sub-
sidiary terms, and derives the formulation relating to these terms. Not
explicitly stated 1s the assumption that the processes which such a model
describes are not strictly "mechanistic', but that the "on-going events"

are affected by the ensemble of past occurrences.

Chapter 2 explains the subsidiary terms employed in Chapter 1 and re-
lates them to the systems research problem under study. KEquations
2.6.3 express the final form of the theory and are amenable to the
following interpretation:

They determine the number of loaded trucks in transit per unit area

at a given place at a given time which, in the course of carrying out

a mission, are being subjected to being put out of operation, deflected,
or forced to change their speed by terrain, enemy action, or decision,
barring historical accident,

In the succeeding chapters of the report, this theory will be tested and
applied against itheoretical, practical, and historical evidence,




CHAPTER | - THE TRANSFER EQUATIONS

INTRODUCTION

Today, military mobility is becoming identified with a major problem
area: logistics of moter transport, A further simplifying assumption
frequently made is that this proolem can be measured by measuring the
ability of a vehicle to traverse natural terrain. This paper contends that
the validity of this implicit assumption has not been demonstrated; rather,
the complete system should be analyzed, with simplifying assumptions made
only if the model complexity is beyond the capacity of modern mathematics
and computer technclogy.

This paper wili present the derivation of the theoretical model. The im-
portance of the parameters will be the subject of a computer analysis after
the model has teen historically verified. The companion paper '"The
Terrain Scatltering Probahility" is prepared separately so that the require-
ment for a measure of performance for specific units may be met but will
enter this moedel as the scattering parameter.

GENERAL NATURE OF THE PROBLEM*

It 1s desired to know the transfer intensity and the time-space density of
units of supply under large.scale operations involving varying battle con-
ditions and terrain features. We assume that general coefficient and proba-
bility functions that take these factors into account can be realistically de-
fined. Here, we will investigate the intensity and density of loaded carrier
units. In general, such an ensemble can not be adequately described in
ordinary space, but requires a six-dimensional place space u (%, , x,, X3,
Vx1s Vxz» Vx3). This problem requires only a four-dimensional place
space, which will be modified to suit the problem.

DEFINITIONS

- -
Consider a place spacepu with coordinates p(R, @, t).

-
Variables: Position = R
- -
Direction = (H Q H =1).
Dependent
Variable: I, = intensity.

*This development parallels Chandrasekhar, Referénce 3, and follows
Anselone, Reference 6. ({References. are given in the Bibliography. )
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- - - -
1.2.1 I, (R, ) = units at R traveling in the direction

-
per unit area _l_ to Q
per unit solid angle about Q
per second

where the units are loaded trucks.

) - - _l_ -
For a given R and Q, construct an element of area do L to Q.
With each point of do as a vertex, construct a solid angle dw about Q.
The resultant figure is called a pencil.

Figurel. Pencil.

- -
From the definition of I, (R, @), we obtain

- = =
1.2.2 I,(R, Q) do dw dt = units at' R traveling through points of do
with directions in dw about .

: _l_ =
Let do be an area not necessarily to .

_)
PaRE
< H No H =1
E\_/ 9 I\I-)O
do' = cos ©do
do ™
Figure 2,

The radiation passing through do¢ also passes through do'. Thus,

1.2.3 Iv(f{), 5) cos © do dw dt = units/é_g_fi traveling through points
of do with direction in dw &’60%9.

It is convenient to define

1.2.4 f)v (f{), 5_2)) = Iy (f{),ﬁ)) 3, which is a vector at R in the &

direction having a length equal to the intensity in that direction.
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- -
The net vector flux mF,, (R) is defined

- - e I

1.2.5 wF, (R) = fw I, ng ng dw = fw I, €. ng ny dw.

The net transfer of units across a unit area in any arbitrary direction
— -
N at R (IIN Il =1)is given by
- - - - -3 N ) -
1.2.6 wF, * N = [yly - ngng: Ndw =[u, 1 Q- ngng- Nduw

—
and || nF, || = [, Iy cos © dw.

-
where O is the angle between the chosen direction N and the variable
(of integration) direction.

- - - -
Consider the units as sociate_gl with I, (R, &) for a particular R and Q.
As the units proceed in the @ direction, they may be absorbed or
scattered in a direction or velocity other than the direction and velocity
of interest,

Thus, the intensity is diminished as it travels through the medium.

) ds ﬁ+ds§>
— \ dm -
</
do
Figure 3.

- -5 - - -
Let I, (R + sQ, Q) denocte the number of units of I, (R, Q) that remain

. . . . _) . .
in the ray after traveling a distance s in @ direction.

The difference
- - - -
dl, = I, (R+dsQ,Q) - I, (R,Q)2 0

is generally proportional to ds, to I, and to the density p of the medium.
Thus, write

1.2.7 dI, = - k,pl, ds

where k, is the ""Mass Absorption Coefficient'.

- -
Consider the Joss from I (R, @) due to absorption in an element of

"mass'',

dM = p do ds (see Figure 3).




Recalling the definition of Iv(—ﬁ, 5) and equation 1.2.2., the losses of
units in dM are given by

1.2.8 L,do -+ kypdsdwdt = k, I, dM dwgt = loss
of units of velocity v, in direction & in dM

- -
Suppose that a unit traveling in thg Q_c)lirection is absorbed at R.
We define the Phase Function, p(£, '), such that

- =
!
1.2.9 E—% = the probability per unit solid angle about Q' that

-
the unit will be scattered into the £ direction.

Thus,
9, 2 >
-
1.2.10 1’—(‘”—° k, I, (R, £') dt dM dw do'

- -
= units scattered from direction ' into direction & .

-
Integrating over all directions ' of the incident ray,

. k - o R
1.2.11 j, 8) < — Jur @801, (R 2)do
-
= units scattered from all directions Q' into the particular
direction @
-
per unit solid angle about Q
per second 5
per unit mass at R .
iv (S) is the emission coefficient due to scattering. The general

emission coefficient is

1.2.12 j, =j, (R, ) = units emitted in direction &
per unit solid angle about §
per second =
per unit mass at R.

The ratio

. - -
1.2.13 j ky = fv :fv (R, £) is the source function.




DERIVATION OF THE ELEMENTARY EQUATION OF TRANSFER
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direction.

o=~

Consider an element of mass dM emitting in the £

Figure 4.
From the definition of emission coefficient, we have i
-

1.3.1 j,dM =), pdods = units emitted by dM in the § direction

per unit solid angle about 5 , per second.
Dividing by do and letting do -0, we obtain

g — - -

1.3.2  j,pds = units emitted along the line (R, R + ds Q) in the Q
direction R

per unit solid an_gle about £

per unit area Lg
per second.

By definition,

L o Jvpds =intensity of direction § emitted along the segment
(R, R+dsQ).

Taking irto account absorption and emission, the net change in the intensity

18
o o
1.3.3 di, (R, Q).

Thus, the transfer equation is

- o
1 dIv (R, Q) B - = - -
1.3.4 T E = I, (R, )~ [y (R, Q)

or
1 - - > _ - - - -
1.3.5 mmﬂ VI, (R,Q) =L (R, Q) - [y (R, Q).

-
Remember that % and V are operators for the variable R and arbitrary
but fixed € .




THE DENSITY OF UNITS

The density U,, of units of the radiation at velocity v at any given point
is the number of units per unit volume that are in transit in the immediate
neighborhood of the point considered.

Following Chandrasekhar (Reference :3, Chapter 1, Section 2. 3) to find
this density at a point P, construct around P an infinitesimal volume V
with a convex surfaceg . Around V construct another convex surface Z
such that the linear dimensions of Z are large compared with those of o
and such that the volume inclosed by Z is nevertheless small enough such
that the intensity in any given direction can be considered as the same
for all points inside Z.

Now the radiation traversing the volume V must have crossed some
element of the surface £, Let dZ be such an element, Further let ©
and ¢ denote the angles which the normal to dZ and to an element do
of 0 makes with the lines joining the two elements. From equation 1,2.3,
the units streaming across dZ that also flow across do are

cos ¢ cos @ dogdZ

1.4.1 I, cos©dZ dw' = I 2

since the solid angle dw'subtended by do at d¥ is —d—a%o—s—gwhere r is the
distance between dZ and do. T

Figure 5.

Let £ be the length traversed by the pencil of radiation through the
volume element V. The radiation 1.4.1 incident on do per second will
traverse the element in a time é., where v is the speed of the units, The
contribution to the total amount of radiating units in course of transit
through v by the pencil is

cos { cos ©dodX

2_1
1.4.2 I, 5 =2 I, dvde

where do = dZ €58 5 the solid angle subtended by dZ at P and
dV = do cos{is the volume intercepted in V by the pencil of radiation.
Thus, the total number of units in course of transit through x due to

streaming in from all'directions can be obtained by integrating
[ ]




1.4.2 over all V and w . Hence,

1 v
1.4.3 vf dV/[dwl, = < /1y dw.

Thus,
1.4.4 U =21, de.

Let J, = 3}11_ [ 1y dw be the average intensity., Then
1.4.5 U, =4%J,.

NOTES ON THE SPECIFIC TRANSPORT EQUATION

Following the spirit of the simple transport model discussed, the specific
transport model in which we are interested has the following terms:

*’

SOURCE
Enemy
Due Enemy
Terrain

_‘Speed Transfer Due

Figure 6. Model.




EVENT AND INTERACTION CROSS SECTIONS

(See Figure 6)

Absorption (losses)

Anunihilation by enemy action
Spced transfer (enemy action)
Speed transfer (terrain)
Scattering (enemy action)
Scattering (terrain)
Incidental losses

Sources

Speed transfer (enemy action)

Speed Transfer (terrain)

Scattering (enemy action)
Scattering (terrain)

Incidental gains

Kav) Pavi Kava Pav
Kbvi P avi kKbvz Pave
Kevi Pbvi Kcve pbve
Kdvi pavi kdv: pave
Kevi pbvi Kevz Peve
L, L,
S, S,

kKpya Pavz Pa (V2 = vy, ﬁ:ﬁ' )

- o
Kpyi Pav) Pa (V) »v2 s &, Q')
Kevz Pbva Pb (v, vy, 5:3')
=
K cv1 Pbyy Pb (v, »v,, 2,8 )

= 2

o o 1
kdvi pavi Pevi (2,8Q')  kdvz pavz Peve (2,821)
=2 2, 2
kev) Pbyvi Pdvy (2, 8") Kevz Peva Pdva (£,2°)

G, G,

where the coefficients and propabilities are defined in the obvious manner

with appropriate dimensions.

10




(A) Absorption:
- {kavx tlyy, + kdvx} Payy t {kcw * kcvn} Pbvy 1 Ty, ds

= - K, I, ds

and similarly define

- Ky Ly, ds = - {kavz tlopy, + kdvz} Pave t Kcvy Py, t

Kevz Pevz )1y, ds.

(B) Emission.

. Khy > - - - o
Javi (vz o vy )= 4bv' J‘w'Pa (v » vy, @, Q) Iy, (R, 9')do',

m

R KCVZ f | - —)' —) ——)l :

g (vesvidz——= Ju'pp (v2 ovi . 2,0') Iy (R, @) do',

q Kdv) = Ok =g .

Jyvi " Tan W' Peyn (8,897)1, (R, Q") dw!, and

a K . - -—)' - -

Jévi = % fw Pdvl (Qx Y] ) Iv1 (R-! Q! ) dw'.
Thus,

- - '

1.5.1  dIy (R8) = - Ky, Iy ds+ (v, {v2 - Vi) Pav: *

A . q
JBv1 {Vz 2 Vi) Pove Tyvi Pavi Tlsvi Pbwi ) ds L«

Combining similar terms,

e
1.5.2 dI,, (R,Q)=-K, I, ds+ ), (v, 5v,)ds +j, ds

where

iy Vo v ) = Lo {Vz—’ hdj } Pave 1 ipn {Vz - Vl} Pbvz )
and

Jvi = (ij Pavi t Jowi Pb_v1)°

*In the case of v,, terrain scattering density Phy; Pecomes p .. .
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Finally

s —
dl,,, (R, Q) = = : ;
1.5.3 [-——VITIS——— = —KVl IVl (RpQ) +-]Vl (Vz"vl) + JV[ .

For convenience, write:
. 1 - - -
Jvi = 3w [ {kdvl Pavi Pevi (8, Q') + keyy by Pdvi (2, Q')}
- -—)' :
I,, (R, Q') dw
. 1 = a,
Jvi vy - vy) Iw for {kbvz Pave Pa (Voo vy, &, ) + Keya Pbve
Pp (v, » vy, a, S_Z)')} N7 (R, ') dw'.
Or
1 2 2 = ,
Jvi = 7= for Pvi (2, 2') 1, (R, 2')de'  and
. 1 -5 =, T
vi (Vo o vi) = 2= [0 pvt (e vi, 2, Q1) 1y, (R, Q') do'.

The appropriate systems of equations now take the form

o o
dIvl (R,Q) = 9 1 = 2 =. 2
1 - 2 - =
+ 4_1? f(&)' le (VZ - Vl » Q, Q') IVZ (R, Q') dw‘
- =
dIVZ (RrQ) = 2 1 —)—)' - —-)' .
1.5.5 B t Kyz Iy (RyQ) = g0 o1 pve (2,2')],; (R, 2')do

1 - =2 - -
+ Z'_TT—I(J)'pVZ (Vl - VZ 3 Q’Q')IVI (R,Q') dw‘,

These equations are of the operational form.

1.5.6 DIy =ky Ly + Ay Iy,

DIy, =k, I, +Ay Iy .

O
N
)
e
"

kyyx + Ay y

Dy = k-VZ y + AAVZ X

12




So that

1.5.7 AVl Yy

u

Dx - ky; x

Ay, x = Dy - kyp y

This is the general model without arbitrary source or loss terms.

THE TIME-DEPENDENT TRANSFER EQUATIONS

-5 o
(A) In the simple transfer model, if I, (R,, t) is time-dependent, the
transfer equation takes the form

=0 ) - = ~
1 dI(R,Q,t) _ 1 dIv (R, Q,t) oy = [ =3
1.6'1 kV Pv dt - -k_;p as 'IV(R;Q)t)'i' v(R,Q,t).

- =
(B) In the two-speed transfer problem, if I, (R, Q,t) is time-dependent,
the transfer equations take the form

1 dly (R, Q,t) dly, (R,Q,¢) 5 o
t
6.2 = vl ) Wby - vi 3 Ay .1 ,0,t
1.6 T n 15 Koy Iy (R, Q )
1 - - - 2
+21?fw" Py (SZ,SA')IVl (R, Q!, t) dw'
1 - = -2 -
+Zn_fw' Py, (V,ov,, €,8') I, (R, Q,¢t)do
I dly, (R,0,t) dly, (R, 9,t)
v2 R,Q,t _ IVZ q ,t - =
1.6.3 v I = - Ts -Ky Iy, (R, Q,t)

- - 2
tg— [Py, (2,2')1, (R, Q) t) do'
1 = 2
v Lo Py (v v, 8,801, R 6 do,

w

where arbitrary source and loss terms are deleted.
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CHAPTER 2
OPERATIONAL SIGNIFICANCE OF THE TRANSFER MODEL

INTRODUCTION

Before proceeding either to a theoretical investigation of the system of
equations 1.5.4 and 1.5.5 0r 1.6.2 and 1.6.3 derived in the last chapter
or to studying them in a specific geometry, we will relate these systems
of integrodifferential equations to the systems research problem at hand
through a statement of the significance and dimensions of the coefficients
and probabilities involved.

Consider a large-scale theater of operation involving regions of varying
terrain conditions and various intensities of enemy aclion. Suppose that

it 1s desired to be able to predict or maintain a supply system (function)

1n this area. To do this it is assumed, barring local anomalies and
historical accident, that by and large the gross determination of a supply
function is governed by general terrain properties, enemy action, personnel
bebavior, and command decision. In this paper, we will consider only
supplies delivered by land carriers such as trucks and will define our unit
of supply as one loaded truck. We assume that this unit travels at a speed
v and is destination oriented. In the course of a "trip', it may be put out
of operation (anrihilated), defiected (scattered), or forced to change its
speed (transferred) by terrain, enemy action, or decision. Taking such
effects into account, the problem is to construct an applicable model that
determines a probable supply function.

We have accecpted the fact that a natural dependent variable or concept is
the intensity (defined in Equation 1.2.1) of units at a point in space traveling
in a given direction. A realistic formulation of absorption and scattering
requires this angular dependent intensity and requires an integral formu-
lation as, for instance, the inte =ity in a given direction at a point is
influenced by units being scatt _d into this direction from all other di-
rections at this point. We are thus led in a plausible manner to a transfer
equation, and, because of its generality, adopt transfer theory, which we
will attempt to make applicable.

In the specific model considered, it is further assumed that cross-country
mobility, v, substantially differs from on-road mobility, v,; for this
reason, two speed groups are considered. This leads to a systern of two
dependent transfer equations, one governing the intensity for on-road
speed and the other governing the intensity for off~-road speed where the
average speeds are taken to be representative of the groups.

We now have to relate the coefficients and probabilities occurring in the
transfer equations to operationally meaningful quantities and derive re-
lations expressing these quantities. The coefficients and probabilities

14




will be given for a two-spacial dimensional model. The preceding model
and theory have been presented in three-dimensional form, There are

two virtues in this approach. The first is an emphasis on generality and
the second is to distinguish clearly the nature of physical entities in similar
applications and the operational entities that will be presented below. For
instance, there is no conceptual difficulty in defining our two-dimensional
density. The two-dimensional equations to be considered are similar to
those already derived except for the occurrence of a factor of 2w in place
of 4 n (see equation 1.2.9) with the obvious changes in dimensions.

GENERAL SIGNIFICANCE OF THE DENSITY p AND MASS ABSORPTION
COEFFICIENT k

Strictly, the density p = /1\1—1’?) %

where A is an area and M is the mass associated with this area. As
we are interested in a stochastic model, average values and probabilities

apply, so define

where M is the total mass associated with a fixed area A.

- o

Recall that I, (R, € ) dodo dt

H

. _) . . - . ‘_)
units at R traveling in direction .

loss of units at R traveling in

and kI, (R, @) dwdtdM
direction .

Thus, take kpds to be dimensionless.

Now p = mass/unit area, where mass is defined in terms of intensity
of enemy action, terrain properties, etc.

k is thus seen to be a probability that in a unit area an absorption will
take place

per unit mass

per unit length.

k can be called the mass absorption coefficient.

15




OPERATIONAL DEFINITION OF THE DENSITIES AND MASS
ABSORPTION COEFFICIENT

We now consider scparately the different absorption terms given in
the table (page 10).

Annihilation by Enemy Action

Define
Pav), = occurrences unit area, where an occurrence could be the
detonation of a bomb, As discussed,

_ total number of expected events (occurrences) in a region.
avy - area of the region

2.3.1

Then k,,, is the probability per ugit occurrence that a unit will be
annihilated in terms of length Lto Q.

pay, and k.., are similarly defined.

Sgeed Transfer by Enemy Action

kpy, and ky,, are just the probabilities per unit occurrence that a
speed transfer will take place.

Speed Transfer by Terrain

The nature of terrain 1s fundamentally different 1a the cases of on-road
and off-road.

Off-Road: From terrain features such as slope :and soil conditions,
ago/no-go function can be evaluated for an area which will determine
whether a specific vehicle type will or will not stall in this area. If we
consider a region R (see Figure 7) and impose a grid on it giving go/no-go
values for different cells,

7//‘ V/A no-go

go

R
Figure 7.
16



a density pp,, can be defined as

number of no-go cells 1n the region
areca of the region

2.3.2 Phy =

Then k,, becomes the probability per uni_} no-go that a unit will be

transferred given in terms of length L to @ .

On-Road: Consider a road net in a given region. Impose upon it
a rectangular grid (sece Figure 8) such that the map in each cell is con-
nected and such that each crossroad falls within a cell. Now, in each
cell of this grid, construct a linear approximation to the road map such
that the maximum distance from the road to the linear segment is a pre-
assigned value, saye (see Figure 9), and such that the segment is tangent

s
s




to the road at its contact points. Now consider the following two
quantities:

¢ = sum of the angles that adjacent segments made with
cach other then considered as vectors located in first
and second quadrant with respect to a preferred direction y.

¥ = the absolute value of the signed sum of the angles that the
segments make with a preferred direction when located 25 above.

Further consider the conditions of the road net in a cell. Because of
such factors as a bridge out, road demolished, or mud, traffic may be
stalled. From these three quantities can be determined estimates of a
transfer/no-transfer function for each cell. Thus, as in the case of
off-road traffic, a density py,,, and a mass absorption coefficient k .,
can be evaluated.

Scattering by Enemy Action

kqy,.and kg, are just the probabilities per unit occurrence that a
scattering event will take place.

Scattering by Terrain

Koy, 1s the probability per unit no-go that a scattering event will take
place. The on-road density p,,, is, however, in general different from
Ppy, - Consider Figure 9; a scattering event occurs if there are two

or more branches issuing from a cell with different tangent vectors.

We will assume that the case in which two road branches issue from a
cell is fundamentally the same as that in which multibranches issue from
a cell. A further refinement would be to make this distinction. Thus

we could, in principle, determine a scatter/no-scatter function for each
cell and then derive a density pgy, and corresponding coefficient kg, .

GENERAL SIGNIFICANCE OF THE PHASE FUNCTIONS

- o
The phase function (221;9") was defined to be the probability per unit

= e -
solig angle about ' at R that a unit absorbed at R will be scattered into
the @ direction (see equations 1.2.9 and 1.2.10).

OPERATIONAL DEFINITIONS OF THE PHASE FUNCTIONS

We now consider separately the different phase functions given in the
table.

18




(B) Speed Transfer by Enemy Action

Here the on-road transfer phase function differs from the off-road
transfer phase function. Realistic plan functions can be constructed in
the following manncr:

First recall that

—

-
2,0 >
pLit, 07} dw = the probability per unit solid angle about Q'that
2n Yy P

-
the unit which was absorbed will be emitted into dw about £, given that
an absorption-scattering (transfer) event has occurred.

-
Now, consider p, (v, »v, , &, ﬁ') and consider the situation illustrated
in Figure 10, s

Preferred Direction of Travel

Figure 10.

Oncia trsnsferring event has occurred on tge road, a unit traveling in
the ' direction becomes reoriented in the € direction, with a symmetric
distribution about the preferred direction of travel, x. As with the phase
function for pure scattering to be considered later, we assume that
Palvesv q, ?2') = py (Vosvy, ), or the phase function is independent

of §'. Thus,

1 }" - — __)' .
—2—1? (A)l Pa (VZ"')VI’Q)IVZ (R,Q )dw

2.5.1 N I
Pa (vasvi, Q) [y I,, (R, ') do'

PA

19




Now consider py(vy —v; ,6, ﬁ') and consider the situation illustrated
in Figure 11,
x Preferred Direction of Travel

\

Figure 11.

Once a transferring event has occurred, a unit traveling in the SZ’
direction becomes reoriented 1n the § direction independent of 9. Let

the T;5 bc the tangent vectors to the roads as explained in paragraph e
under "Speed Transfer by Terrain', where the road has been "linearized",
and let © be the resu'tant on-going direction of the units. We assume

that the phase function 1s of the following form:

where L T A

(o]
s8]
Al
=
=
i
A

it 1s the number of road branches, and

—_
fwl 0 (T, 8)dw= 1.

-
A realistic determination of the § ( , Q) 1s indicated in Figure 12.

a
X
i

Normal
Curve

Figure 12.
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- —7 = - = - \
whend, (T, , Q)istod, (T, ,Q) as h isto h,

- > - - -»
and where [, {6, (T),2) +6, (T,,Q) Jdu= 1.

Thus,

'é"‘j ga,(?l )-Q’)

| f o o B ot 1
== 14 Py (Vviov,, 2,2') 1, (R,Q")dw

- =

2.5.2 [or 1y, (R,Q') duw' .

(V]

vy Speed Transfer by Terrain

As with speed transfer 1n part (f) above, we obtain:

1 a o R O 1
2.5.3  —— J i pp (3= e )1, (R, Q') dw
pb(Vz—)Vl ,Q)r

3o 1
T ot l,, (R, 8 ) dw

and

2.5.4 ?‘l?fw| Pp (v1->v,,?2),§') Ivl (R,Q)')dwl
b
"E Ob (rFl :ﬁ)

z =2 > [ Ty (—F.{),—S—Z)')dw'

where the gbl s, refer to py (v, - v; ).

{0) Scattering by Enemy Action

Here the on-road case differs from the off-road case.

2n

Off Road: We have determined, considering that a unit is goal-
oriented, that a realistic phase function can be determined in the following
manner: To fix discussion, let the positive x direction in a rectangular

system be the '"ideal" direction of traffic (see Figure 13).

y
o
4 B X
Normal Curve
Y
Figure 13,
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Ass_,_l)xme that once a scattering "event" has taken place, the unit independent
of Q' seeks to orient itself in the positive x direction resulting in an

orientation.
Thus,
2,0') _ p(a)
E(Q’Q = p Q a
2.5.5. 2“ = 2" ...nd

therefore we obtain

1 - - =
2.5.6 5= [ ipPevi (2) Ty (R, Q') do' =
-

Peyr (8) _
T 1y, (R8T du

On Road: To a first approximation, on-road scattering by enemy
action does not take place.

Therefore,

1 - - - -
2.5.7 T n fw' Pcve (2,921) Iy, (R, Q1)dw = 0.

(€) Scattering by Terrain

Here the on-rcad case differs from the off-road case.

Off Road: We assume that, fundamentally, the phase function for
terrain scattering is of the same form as that for enemy action.

Thus,

-
- - o - -5
2.5.8 o= [yipav (@) 1y, (R,8')de'= BILI®) [ o7 (R0 du',

On Road: The on-road scattering phase function might be viewed
as in the cases of speed transfer due to enemy action and due to terrain.
Consequently, we obtain

l — —)i — —)' -
I [t Pave (2,9') 1, (R, Q") dw' =

"

i=1 d
2T Iw'Ivz

HMe

(R, Q") dw'.

22




THE MODIFIED GENERAL EQUATIONS

Clearly, the definitions and assumptions introduced in this chapter
mathematically simplify the general transfer equations. The appropriate
simplified equations will be derived below.

Time-Independent Equations

The absorption terms given in the section "Notes on the Specific Transport
Equation' in Chapter 1 are unaltered. The emission terms will take on
the following form:

-V ) —'--kzlzr—vipa (v, > v, ,9) fwllvz(ﬁ,ﬁ') dw'

(v

J(}‘Vl 2

. kb |-
Jave (Vi »ve) = 'z'ﬂll.z b (

1=1

0l

Y
T:

1 1

) [ Ty (R,8) dot

k - -
(v, -v,) V2 opp (v, vy, 2) [Ty, (R,Q')do'

Jpvr (v =T

™

JBvz (vy »vy) =1—(2(ll- j%lgb (Ti,aflfwvlw (ﬁ,ﬁ') dlg.o'

. kdvy) = P

J‘ym = 727 Pevt (2) fw' I, (R,Q'") dw'

J'yvz = 0

T 1. 8 1y, (R, 2)de

Jovi - 2T Pdwv (Q) W' Vl( 1 ) W

- key, b = 2 2 - o

e = 2w 2 09a(T,9) [ 1y, (R,Q")du".
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Thus,
dl (-}-{) S—Z’) - o —
_llTE'—,——= -Kyi Iy (R.Q)+ Zpy o' Iye (R, Q') du'
- -
t Zgw Ju' Ivi (R, Q') do'
2.6.1 AND
dIy; (R, 9)
- ) - =
____VZd_S___= ~Ky Ty (RQ) + 2y, fis Iy (R, Q) do'
- -
t Zgy, o 1, (R, Q) do'
where K K .
- Xbyz2 P = cv2z Pbv2 =
oy T vgz"__" 2 p, (v, 5v, Q) + —>-— Pb (v, 5 v, , Q)
Ky Pavi = Kevi Pbv =2
Zgyi = o Pevi (2) + m Pdwi (2)
Kpyy Payy B = o o KeviPbn B = 2 2
T —_— : _— T, Q
Ztve 2m = ba (Ti. @) + 2m i§1 5 (1. 0}
k P |- - -
evz Peve
e = — El 04 (T ,Q) -
Time-Dependent Equations
The time-dependent equations become:
dIy; (R, Q) dly, (R, Q)
nLs vl , _ vl R, =
2 dt T ds - Ky1 Ivi (R, Q)
+2. [ 1. (R, 8de' +2Z_. [aI. (R, Q')dw
tvi Jw' tva W - svi Jw' typ W w
L dIVZ (R!Q) - . E]'_I_XZ (R:Q) _ K I (E Q)
v, dt ds ve tve AT
- - : 2 2 \
20, Jo Iy, (R Q)de + 3., [or Iy, (R, Q")dw
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In general, we will be interested in the density functions that are conse-
quently governed by the following equations:

] du; du = =

‘,‘,T‘a'rl"qgl'Klul*Ln“szEslul
2.6.3

1 du du; = —~

v, Ei_z = T Kou, #3; v + Zg, u
where

u  =u (R) u, =u, (R)

o kKbva pave | Kcva pbve

it

2T 2m
= kdvi pav) Kevi Pbvi
== ) o b AU T (OO A

Zs) 2T 2w
5y, = kbvzlﬂp.aw + Kew Tl:bw

k -
Ts = ev;nﬂevz

where arbitrary source and loss terms have been dropped.
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